
 Rong Zhou, Mark Goh, Gang Chen, Ming Luo, Robert De Souza

Dynamic and Stochastic Job Shop Scheduling Problems Using
Ant Colony Optimization Algorithm

Rong Zhou1*, Mark Goh1,4,5, Gang Chen2, Ming Luo3, Robert De Souza1

1 The Institute of Logistics – Asia Pacific, Singapore
2 School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore

3 Singapore Institute of Manufacturing Technology (SIMTech), Singapore
4 Business School, National University of Singapore

5 University of South Australia
EMAIL: tlizr@nus.edu.sg

Abstract: Reactive scheduling is often been criticized for
its inability to provide timely optimized and stable schedules.
So far, the extant literature has focused on generating
schedules that optimize shop floor efficiency. Only a few
have considered optimizing both shop floor efficiency and
schedule stability. This paper applies a unique self-
adaptation mechanism of the ant colony optimization (ACO)
algorithm to enable the reactive scheduling approach to
generate better and timely stable and quality schedules for
dynamic and stochastic job shop scheduling problems.

Keywords: Self-Adaptation Mechanism, Ant Colony
Optimization, Schedule Stability, Dynamic and Stochastic
Job Shop Scheduling.

I. Introduction

In a job shop scheduling problem (JSSP) with n jobs and m
machines, each job has m operations to be processed on m
different machines. The sequence of operations for each job
to be processed is unique. A schedule is thus sought to
complete all jobs considering shop efficiency, which can be
measured through makespan, tardiness, flow time, etc. The
JSSP is a well-known NP-hard problem.
A JSSP is dynamic (stochastic) when dynamic (stochastic)
events are considered. A typical dynamic event is an
unexpected arrival of a new job while stochastic events
include machine breakdowns or variations in processing
times. Such events, which are common in practice, can
immediately render a schedule obsolete by changing the
underlying JSSP. Thus, a schedule has to be updated within a
short time period for smooth production. Hence, any newly
updated schedule must have a high performance in terms of
shop floor efficiency and be as consistent as possible to the
original one since many related supply chain activities such as
purchasing, materials handling, inventory, and distribution
were planned based on the original schedule. The attribute
that an updated schedule is consistent to the original one is
referred to as schedule stability. The main challenge for
scheduling dynamic or stochastic JSSPs is to generate both
quality and consistent schedules under tight computing time
constraints.
In this regard, the solution approach has been twofold: before
and after the actual occurrence of the disruption. Given this,
there are two categories of scheduling approaches: proactive
and reactive. Proactive scheduling, also known as robust

scheduling, seeks to pro-actively build robust schedules to
sustain interruptions through strategies like inserting idle
times or introducing redundancy in either resource or
schedule. The main disadvantage of proactive scheduling is
that shop efficiency performance will be sacrificed if the
expected interruptions do not occur at a later stage.
Reactive scheduling, or rescheduling, focuses on generating
new schedules or modifying an existing schedule after the
actual occurrence of an interruption [1]. Its advantages are: 1)
there is no wasted computing effort a priori nor the sacrifice
of shop efficiency from inserted idle times; 2) an optimized
new schedule with a global view can be targeted if a complete
schedule is generated. Despite this, besides the prohibitive
computing costs for most scheduling problems, is that the
newly generated schedule may cause “nervousness” on a shop
floor due to the inconsistency between the updated and the
original schedules. Scheduling for schedule stability is also
referred to as minimally disruptive, minimal perturbation, and
minimum deviation scheduling.
The current study shows that a complete regeneration of the
schedule in the paradigm of reactive scheduling, against the
common belief in the literature, can also provide timely stable
and quality schedules for dynamic and stochastic JSSPs using
the unique self-adaptation mechanism of the ACO algorithm.
Two attributes of the ACO, which is inspired from the
behavior of foraging ants, make it amenable for solving
moderate dynamic or stochastic JSSPs. First, ACO can
generate optimized solutions and the pioneering work in this
direction has been reported in [2][3][4][5][6] for many types
of scheduling problems. Next, ACO has a unique self-
adaptation mechanism [7][8][9] to update an obsolete
schedule without losing quality and stability.
Beyond those achievements, this paper aims to answer some
additional research questions other than what the above
mentioned: 1) what is the stability performance of an updated
schedule generated through this mechanism in addition to its
shop floor efficiency? 2) How does the response time affect
those two performances? We investigate both questions for
moderate dynamic and stochastic JSSPs.
The paper is structured as follows. Section II presents the
ACO algorithm and its self-adaptation mechanism. The
experiments and solution analyses on dynamic and stochastic
JSSPs are found in Sections III and IV respectively. Section
V concludes.

II. ACO and its self-adaptation behavior

The 4th International Conference on Operations and Supply Chain Management, Hongkong&Guangzhou, Jul.25 to Jul.31, 2010

310

 Rong Zhou, Mark Goh, Gang Chen, Ming Luo, Robert De Souza

The notations used in this paper are listed as follows.
h is the index of iteration number;)(hpij

 is the probability

that an ant travels from node i to node j at hth iteration;)(hij
is the quantity of pheromone on the edge connecting nodes i
and j at hth iteration;

ijd is the heuristic distance between

nodes i and j; ρis the evaporation coefficient, a real number

between 0 and 1; hij is the amount of increased

pheromone on the edge connecting nodes i and j at the hth
iteration; Q is the constant representing the total quality of
pheromone on a route; farsobestf evaluation __ is the best

value obtained so far for a given objective.

a. ACO
The ACO algorithm in basic form is given in Figure 1.

Figure 1.The ACO algorithm

Ant i chooses its next destination according to the State
Transition Rule in eqn (1) [3].

 ij

ij
nodesallowedj

ij
ij

ij

d
h

d
h

hp
1

.)(

1
.)(

)(
 (1)

Each ant leaves some amount of pheromone on the edges it
has passed. The values of the pheromone on all edges are
recorded in a pheromone matrix. Its updating involves
evaporation and enhancement, which are represented in eqn
(2) and (3) [3].

 111 hhh ijijij
 (2)

otherwise

farsobestf

Q

h evaluation
ij

,0

__
1

(3)

vu

d

d
hp

vuRuleTransitionState

ijnodesallowedj

ij

ij
1

1

)(

,

 (4)

u: random number between [0..1]
v: percentage of variation rate [0..1]

Next, a variation rate parameter v can be introduced to
further diversify the search space through eqn (4), where u is
a random real number in [0, 1] and v is a preset value. If u is
greater than v, the probability of an ant choosing a next
destination follows the State Transition Rule, which has the
impact from both the pheromone and heuristic distance

ijd ;

otherwise, only the information heuristic distance is used to
decide the next destination.

b. Apply ACO to a classic JSSP
A classic n-job and m-machine JSSP for optimizing
makespan can be represented in the form of n/m/G/Cmax,
where G is the job shop and Cmax is the makespan. The
problem graph of a 2/3/G/Cmax JSSP can be illustrated in
Figure 2. Nodes 1 to 6 represent operations O11, O12, to O13,
and O21, O22, to O23. They are connected by horizontal
directional edges indicating the precedence constraints given
in the technical matrix T. The bi-directional edges indicate
no ordering constraints among those operations. Dummy
nodes 0 and 7 representing the source and the sink of the
graph are the start and the end points of the route.

Step 1: initiate iteration counter h , the best global route, and the
pheromone matrix

Step 2: initiate ants
Step 2.1: each ant finds a route according to formula (1)
Step 2.2: find the best route in the current iteration; update the
best global solution
Step 2.3: update the pheromone matrix according to (2) and (3)

Step 3: increase h by one. Go to step 2 unless termination criteria are
met.

0

654

321

01,
d 01

04 , d

04

12, d12 23, d23

45, d45 56, d56

1: O11

2: O12

3: O13

4: O21

5: O22

6: O23

7

37 , d

37

67,
d 67

Figure 2. Graph representing a 2 x 3 JSSP

Each edge is associated with a pair of values ijij d, ,

representing the amount of pheromone on it and the heuristic
distance between the two nodes it connects. The value for

ij

is found in the pheromone matrix, which records the
pheromone values of all the edges connecting every two
nodes and is updated using eqn (2) and (3) by the ants that
find the best solutions. ijd represents the processing time of

node i.

c. ACO self-adaptation mechanism
The ACO self-adaptation mechanism is inspired from the
following natural phenomenon. When the current route from
the nest of a group of ants to a food source is blocked, the
ants do not return to their nest to begin a new search for a
totally different short route. Instead, they quickly form a new
short route that is similar to the previous one using exactly the
same strategy based on the remaining pheromone information
in the environment. Thus, the remaining pheromone
information on the ground can direct ants to find a new good
route, which is similar to the original one, in a changed
environment.
This mechanism is realized by keeping the old pheromone
information on all remained edges while setting a preset
amount of pheromone value on all newly generated edges.
Then, ACO is run until a new good solution is found in the
allowed time span. The new schedule is regarded as a self-
adapted result from the obsolete one.

The 4th International Conference on Operations and Supply Chain Management, Hongkong&Guangzhou, Jul.25 to Jul.31, 2010

311

 Rong Zhou, Mark Goh, Gang Chen, Ming Luo, Robert De Souza

Figure 3 illustrates the changes in the pheromone matrix
after an unexpected job arrives. Figure 3a represents the
pheromone matrix of the original schedule found for the
6/6/G/Cmax problem after 1000 iterations. Figure 3b is the
updated pheromone matrix removing the nodes for
completed operations and adding in new nodes representing
new operations. The edges incurred by the new operations
are initiated with a pheromone value of 0.8 in Figure 3b.
Figure 3c shows the new pheromone matrix of the new
schedule found by ACO after 250 iterations.

(a) Pheromone matrix for original schedule

(b) Initiate the pheromone matrix keeping previous pheromone

information

(c) Pheromone matrix after 250 iterations

Figure 3. Rescheduling with the ACO self-adaptation mechanism
It is clear that the solution information of the original
schedule recorded in the lower left part of the pheromone
matrix (Figure 3b) can most likely be kept in its updated
schedule (Figure 3c). However, if all the old pheromone
information is erased by initiating a new problem graph with
exactly the same pheromone value on each edge, there will be
no connection between the two problem graphs and the
solution adaptation will not happen.

III. Experiment I: aco for dynamic jssps

The main goal of experiment I is to study the ability of the
ACO self-adaptation mechanism in promptly generating high
quality and stable intermediate schedules for dynamic JSSPs
given different response times.

a. Experimental design
A schedule is issued to a job shop floor sought using ACO as
the initial executing schedule. The MT-6/6/G/Cmax problem
is used here for its known optimum 55 [10] and its simplicity.
An unexpected job (the first job in the MT-6/6/G/Cmax

problem) arrives after the schedule is executed for one time

unit. The reason for setting the arrival time at an early stage
is to make the rescheduling problem nontrivial.
A new complete schedule is then found for the changed set
of operations through two ways: with and without ant self-
adaptation mechanism. For each approach, five levels of
response times are allowed. The five levels of response times
are represented as 10, 50, 100, 150, and 200 iterations. Thus,
there are totally ten problem instances and each has ten
replications. Two performance measures in this study are
makespan and schedule stability. Makespan is the timespan
of the schedule from the start time of the first job to the
finish time of the last job. Schedule stability is described in
terms of the deviation of the start times of all existing
operations.

b. ACO Parameters
The ACO algorithm has nine parameters. α and β in eqn (1)
decide the possibility of the next node that an ant is going to
choose in the problem graph; ρ in eqn (2) and Q in eqn (3)
are used to update the pheromone matrix; v and u in eqn (4)
are explained in section IIIa; Other parameters not directly
shown in the equations are l, τ0, and n. l is the number of ants
per iteration; τ0 is the initial pheromone value on the edges; n
is the minimal iteration number for the algorithm to find a
solution. Here, n is 600 for the original MT-6/6/G/Cmax
problem. The impact of many of the parameters based on the
MT-6/6/G/Cmax problem is analyzed in [6] and the following
values can generate good solutions: α = 10, β = 10, ρ = 0.01.
Further, this paper suggests that the values of τ0 and Q do not
have significant impact on the final solution and the speed to
convergence. τ0 = 1.5 and Q = 100 are used in this study.
Finally, v = 0.15 and l = 36. For the rescheduling problem,
τ0’ = 0.8 is the initial pheromone value for all the newly
added edges.

c. Results
The average performance values of the ten replications
regenerating complete schedules with and without the ACO
self-adaptation mechanism are given in Tables 1 and 2,
respectively.

Table 1: Results with self-adaptation for dynamic JSSPs
Responding
iterations

10 50 100 150 200

Makespan
(original)

61.57 60.86 61.47 61.68 60.47

Makespan
(new)

71.58 66.97 65.67 65.26 64.06

Makespan
deviations

10.01 6.11 4.6 3.59 3.59

STD 289.59 148.13 113.29 102.98 103.12

Table 2: Results without self-adaptation for dynamic JSSPs
Responding
iterations

10 50 100 150 200

Makespan
(original)

61.17 60.57 61.77 62.98 62.77

Makespan
(new)

91.0 85.91 81.49 77.99 76.19

Makespan 29.83 25.34 19.71 15.01 13.42

The 4th International Conference on Operations and Supply Chain Management, Hongkong&Guangzhou, Jul.25 to Jul.31, 2010

312

 Rong Zhou, Mark Goh, Gang Chen, Ming Luo, Robert De Souza

deviations

STD 495.53 507.27 456.81 440.14 437.91

The second row records the mean makespan values of the
schedules for the original MT-6/6/G/Cmax problem and the
third row records the mean makespan values of the schedules
for the new JSSPs after new jobs arrive. The difference in
the makespan values between the original and new schedules
is the makespan deviation, which is recorded in the fourth
row. Finally, the last row records the mean starting time
deviations (STD), which are calculated through eqn (5):

Starting time deviation =)('

0 0
ij

n

i

m

j
ij tt

 (5)

where and are the new and the original start times of

operation O
ijt

'
ijt

ij.
The other statistics of the results such as maximum,
minimum, and mean values of the makespan and the starting
time deviation, as well as their respective standard deviations,
are recorded in Table 3. The values before the slash “/” are
the results using the ACO self-adaptation mechanism while
the values after the slash are results without using the
mechanism.

Table 3: Results with/without the self-adaptation for dynamic
JSSPs

Responding
iterations

10 50 100 150 200

Makespan
(max)

76.08/
94.12

71.09/
88

68.06/
85.09

70.06/
83.06

69.04/
85.09

Makespan
(Min)

66.07/
89.1

62.06/
80

64.05/
79.08

61.04/
68.12

61.04/
69.1

Makespan
(Mean)

71.58/
91

66.97/
85.8

65.67/
81.49

65.26/
77.99

64.06/
76.19

Makespan
Std dev

2.81/
1.8

3.22/
2.62

1.64/
2.27

2.79/
4.30

2.26/
4.70

STD
(max)

503.28/
642.62

393.46/
732.76

248.06/
550.18

213.85/
634.48

194.96/
594.51

STD
(min)

96.91/
368.27

2.00/
373.59

19.08/
334.11

13.16/
242.14

6.99/
246.54

STD
(mean)

289.59/
495.53

148.13/
507.27

113.29/
456.81

102.98/
440.14

103.12/
437.91

STD
Std dev

150.28/
84.33

124.25/
98.55

60.99/
77.67

60.02/
124.18

60.29/
114.97

The second row in Table 3 records the maximum makespan
values among the ten replications for each problem; the third
and fourth rows record the minimum and the mean values.
Then follow the makespan standard deviations. Similar
statistics are recorded in the rest of the rows for the
performance of the starting time deviation.

d. Solution analysis
Overall, the results show that the approach with the ACO
self-adaptation mechanism produces new schedules with
much better makespan and stability performance than those
without using the ACO self-adaptation mechanism for all
five levels of the response times. For the makespan deviation
measure, the performance comparison between two
approaches is illustrated in Figure 4, where labels 1, 2, 3, 4,
and 5 refer to the five response times defined by 10, 50, 100,
150, and 200 iterations.

Figure 4 shows that the makespan values of the JSSP after
the arrival of an unexpected job increase for both approaches.
If the ACO adaptation mechanism is used, the average
makespan values increase only 10, 6.11, 4.6, 3.59 and 3.59
time units (Table 1) for the five levels of the response times,
respectively. However, the corresponding values jump to
29.83, 25.34, 19.71, 15.01, and 13.42 time units (Table 2),
without the adaptation mechanism. Clearly, rescheduling
using the ACO adaptation mechanism improves the
makespan performance of the new schedules.

Figure 4. Makespan deviations for dynamic JSSPs

The adaptation mechanism is very efficient as high quality
schedules can be obtained with the response time as short as
10 or 50 iterations. Tables 1 and 2 show that an average
makespan value of about 61 is obtained for the original MT-
6/6/G/Cmax problem by ACO using 600 iterations. Thus, with
only 10 iterations, it is hard, if not impossible, for ACO
without using the adaptation mechanism to find a near
optimal solution from scratch. However, if the ACO
adaptation mechanism is used, one of the best experiments
obtains a new schedule with only an increased makespan of
3.97 and the starting time deviation of 130.06 after 10
iterations. Figure 4 also shows that the quality of the new
schedules improves as response times increase for both
approaches.

Figure 5. Starting time deviations for dynamic JSSPs

Similarly, for the measure of the starting time deviation, the
performance comparison between two approaches is shown
in Figure 5. The start times of some operations are changed
due to an arriving job. If the ACO adaptation mechanism is
used, the average starting time deviation are 289.59, 148.13,
113.29, 95.99, and 103.12 for the five levels of response
times, respectively. However, for the approach without using
the mechanism, the corresponding values are 495.53, 507.27,
456.81, 440.14, and 437.91. As a smaller value implies better
stability, rescheduling using the ACO adaptation mechanism
improves schedule stability.
Finally, Table 3 shows that the approach using the ACO
adaptation mechanism generates better schedules in all
problem instances in terms of maximum, minimum, and

The 4th International Conference on Operations and Supply Chain Management, Hongkong&Guangzhou, Jul.25 to Jul.31, 2010

313

 Rong Zhou, Mark Goh, Gang Chen, Ming Luo, Robert De Souza

mean values for both performance measures of makespan
and starting time deviation. As for the standard deviation, the
approach with the self-adaptation mechanism outperforms
the one without the self-adaptation when the reaction times
increase to 100, 150, and 200 iterations. The analysis of the
starting time deviations follows a similar pattern.

IV. Experiment II: aco for stochastic jssps

Experiment II seeks to show that the self-adaptation of ACO
can generate solutions with both high performance and
stability for stochastic JSSPs upon machine breakdowns.

a. Experimental design
The MT-6/6/G/Cmax problem is again used here with a minor
modification. Workcenter 5 has two identical machines. An
optimal or near optimal schedule is sought in advance using
ACO with 600 iterations and released to guide production.
During the execution of the schedule, one of the parallel
machines in workcenter 5 unexpectedly breaks down and the
current schedule becomes obsolete. A new complete schedule
is then quickly sought with only one workable machine left in
workcenter 5. To make the updating problem nontrivial, the
machine breakdowns occur right at the starting time of the
original schedule. Thus, the JSSP problem with parallel
machines changes to the classic MT-6/6/G/Cmax problem,
which has an optimal makespan value of 55. The rest setting
and parameter values of experiments are similar to the
previous section.

b. Results
The average performance values for the ten replications
regenerating complete schedules with and without the ACO
self-adaptation mechanism are given in Tables 4 and 5,
respectively.
Table 4: Results of ACO with self-adaptation for stochastic JSSPs

Responding
iterations

10 50 100 150 200

Makespan
(original)

57.46 57.46 57.36 58.86 58.46

Makespan
(new)

63.95 63.26 62.95 63.26 62.35

Makespan
dev

6.49 5.79 5.59 4.39 3.89

Starting
time dev

84.44 80.56 86.53 122.73 109.53

Table 5: Results of ACO without self-adaptation for stochastic
JSSPs

Responding
iterations

10 50 100 150 200

Makespan
(original)

57.36 57.06 58.36 57.57 57.80

Makespan
(new)

82.69 79.08 74.28 69.59 68.68

Makespan
dev

25.32 22.02 15.92 12.03 10.88

Starting
time dev

384.02 415.24 312.44 358.74 318.24

Further, like Table 3, Table 6 also records the statistics of
maximum, minimum, and mean values, as well as the
standard deviations of the two performance measures.

Table 6: Results with/without the self-adaptation for stochastic

JSSPs
Responding

iterations
10 50 100 150 200

Makespan
(max)

68.04/
87.11

69.09/
83.09

67.05/
80.07

68.08/
77.09

67.05/
76.08

Makespan
(Min)

58.06/
80.09

59.04/
71.06

59.05/
69.08

59.05/
63.06

60.05/
64.08

Makespan
(Mean)

63.95/
82.69

63.26/
79.08

62.95/
74.28

63.26/
69.59

62.35/
68.68

Makespan
Std dev

2.73/
1.96

3.33/
3.90

1.64/
3.55

2.41/
4.43

2.11/
3.44

STD
(max)

225.21/
486.22

114.93/
541.26

169.05/
441.47

237.48/
484.54

166.99/
488.18

STD
(min)

21.08/
292.02

37.94/
265.2

41.03/
157.05

10.93/
238.32

66.00/
174.24

STD
(mean)

84.44/
384.02

80.56/
415.24

86.53/
312.44

122.73/
358.74

109.53/
318.239

STD
Std dev

57.56/
57.09

9.28/
93.95

15.15/
94.4

67.66/
86.51

32.89/
109.88

c. Results analysis
Tables 3 and 4 again show that the approach with ACO self-
adaptation produces new schedules with significantly better
makespan and stability performances than those without
using the ACO self-adaptation for all five levels of response
times.

Figure 6. Makespan deviations for JSSPs with machine breakdown
Figure 6 shows the performance comparison between two
approaches for the makespan deviation measure, where the
labels 1, 2, 3, 4, and 5 refer to the five response times
defined by 10, 50, 100, 150, and 200 scheduling iterations.
Generally, the makespan values of the JSSP after a machine
breakdown increase for both approaches. When the ACO
adaptation mechanism is used, the average makespan values
increase only 6.49, 5.79, 5.59, 4.39 and 3.89 time units for
the five levels of response times respectively. However, the
corresponding values are 25.32, 22.02, 15.92, 12.03, and
10.88 time units without the adaptation mechanism.
The ACO adaptation mechanism again shows its ability in
generating relatively high quality schedule (63.95 and 63.26)
within very short response times even at 10 and 50 iterations.
As a comparison, ACO without using adaptation mechanism
can only yield makespan values of 82.69 and 79.08 for the
same computational times. Indeed, one of the best results in
the experiments using 10 responding iterations shows that
the updated schedule has an increased makespan value of
only 2.01 with the starting times deviation at 21.08. For the
starting time deviation measure, the experiments show that
updating schedules with the ACO adaptation can

The 4th International Conference on Operations and Supply Chain Management, Hongkong&Guangzhou, Jul.25 to Jul.31, 2010

314

 Rong Zhou, Mark Goh, Gang Chen, Ming Luo, Robert De Souza

significantly improve schedule stability. If the mechanism is
used, the average starting time deviations are 84.44, 80.56,
86.53, 122.73, and 109.53 (Table 4) respectively for the five
levels of response times. When the adaptation mechanism is
not applied, the corresponding values increase to 384.02,
415.24, 312.44, 358.74, and 318.24 (Table 5), respectively.

The 4th International Conference on Operations and Supply Chain Management, Hongkong&Guangzhou, Jul.25 to Jul.31, 2010

Figure 7. Starting time deviations for JSSPs with machine
breakdown

Figure 7 presents the performance comparison between the
two approaches for the starting time deviation measure.
Similar to those in dynamic JSSP, the ACO with the
adaptation mechanism can produce stable schedules within
very short response times, e.g. 10 or 50 iterations. However,
as the response times continue to increase, the stability
reduces for both approaches.
Table 6 shows that the ACO using the adaptation mechanism
again generates better schedules in all problem instances in
terms of maximum, minimum, and mean values for both
performance measures of makespan and starting time
deviation. As for the standard deviation, the approach with
the self-adaptation mechanism outperforms the one without
the self-adaptation in all problem instances except for the
makespan measure where 10 iterations are used to find new
schedules.
Overall, the above experiments show that the ACO self-
adaptation mechanism can help to generate quality and stable
schedules for stochastic JSSPs. This behavior can be
explained as follows. When the ACO adaptation is applied, a
small number of responding iterations implies a small
number of possible variations from the original schedule.
Thus, the updated schedule is likely to be close to the
original schedule in terms of operation sequence and
schedule stability. When the response time continues to
increase, ACO explores larger solution spaces for better
schedules to replace the original one. This can cause more
operations to be reallocated and subsequently deteriorate the
schedule stability. If the ACO adaptation is not used, the
schedule stability is hardly guaranteed as the updated and the
original schedules have no connections at all.

V. Conclusion

This study explores the ability of the ACO self-adaptation
mechanism to provide quality and stable schedules for
dynamic and stochastic JSSPs within limited response times.
Our results suggest that the quality and the stability of the
schedules generated with the proposed mechanism are

significantly superior to those without using the mechanism
for all five levels of response times, especially, when the
response times are extremely tight which is often the case in
practice. This is critical for practical applications, where the
schedule quality and stability provided with promptness are
important for operation, profit, and competition.
Another merit of this approach is that no extra procedure or
computational cost is required except for the normal
overhead of the ACO algorithm. Further, the application of
the ACO adaptation mechanism is simple and even the
original optimal schedule is not necessarily generated by
ACO, rather, it can be provided by another suitable approach.
Finally, it is against the common belief in the reactive
scheduling literature that regenerating complete schedules
leads to schedule instability, which may be true for
scheduling techniques that do not use an adaptation
mechanism.

Acknowledgements

This work was partly supported by the Agency for Science,
Technology, and Research (A*STAR) of Singapore under
SERC TSRP on IMSS Project 0521160078.

References

[1] Aytug, H., Lawley, M.A., McKay, K., Mohan, S., and Uzsoy, R.,

2005. Executing production schedules in the face of uncertainties: A
review and some future directions, European Journal of Operational
Research, 161, 86-110.

[2] Dorigo, M., Maniezzo, M., and Colorni, A., 1991. Distributed
optimization by ant colonies, Proceedings of ECAL91 – European
Conference on Artificial Life, Elsevier Publishing, pp. 134-142.

[3] Dorigo, M., Maniezzo V., and Colorni, A., 1996. Ant System:
Optimization by a colony of cooperating agents. IEEE Transactions
on Systems, Man, and Cybernetics, Part B, 26(1).

[4] Dorigo, M., Di Caro, M., and Gambardella, M., 1999. Ant algorithms
for discrete optimization, Artificial Life, Vol.5, No.3, 137-172.

[5] Colorni, A., Dorigo, A., Maniezzo, A., and Trubian, A., 1994. Ant
system for job-shop scheduling, Belgian J. Oper. Res., Statist. Comput.
Sci. (JORBEL), vol. 34, no. 1, 39–53.

[6] Zwaan S.v.d. and Marques, C., 1999. Ant colony optimisation for job
shop scheduling. In Proceedings of the ’99 Workshop on Genetic
Algorithms and Artificial Life GAAL’99.

[7] Zhou, R., Chen, G., Yang, Z.H., Luo, M., and Zhang, J.B., 2008. Self-
organized manufacturing resource management: an ant-colony
inspired approach, the Proceedings of the 10th International
Conference on Control, Automation, Robotics and Vision ICARCV,
December 17-20, 2008, Hanoi, Vietnam, 904-909.

[8] Zhou, R., Ren, W., Chen, G., Yang, Z.H., Zhang, J.B., and Luo, M.,
2008. Ant Colony Inspired Self-Healing for Resource Allocation in
Service-Oriented Environment Considering Resource Breakdown.
The 2008 IEEE/WIC/ACM International Conference on Web
Intelligence.

[9] Zhou, R., Ren W., Chen, G., Yang, Z.H., Shen, H.F., Zhang, J.B., and
Luo, M., 2008. Ant Colony Inspired Self-Healing for Resource
Allocation in Service-Oriented Environment Considering Resource
Breakdown, in the proceedings of the 2008 IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent
Technology，Sydney, Australia, WI-IAT, 66-69.

[10] OR-Library, http://people.brunel.ac.uk/~mastjjb/jeb/info.html
(accessed Jan. 2010).

315

http://people.brunel.ac.uk/%7Emastjjb/jeb/info.html

