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Abstract: Reactive scheduling is often been criticized for 
its inability to provide timely optimized and stable schedules. 
So far, the extant literature has focused on generating 
schedules that optimize shop floor efficiency. Only a few 
have considered optimizing both shop floor efficiency and 
schedule stability. This paper applies a unique self-
adaptation mechanism of the ant colony optimization (ACO) 
algorithm to enable the reactive scheduling approach to 
generate better and timely stable and quality schedules for 
dynamic and stochastic job shop scheduling problems.  

Keywords: Self-Adaptation Mechanism, Ant Colony 
Optimization, Schedule Stability, Dynamic and Stochastic 
Job Shop Scheduling.   

I. Introduction  
 
In a job shop scheduling problem (JSSP) with n jobs and m 
machines, each job has m operations to be processed on m 
different machines. The sequence of operations for each job 
to be processed is unique. A schedule is thus sought to 
complete all jobs considering shop efficiency, which can be 
measured through makespan, tardiness, flow time, etc. The 
JSSP is a well-known NP-hard problem.  
A JSSP is dynamic (stochastic) when dynamic (stochastic) 
events are considered. A typical dynamic event is an 
unexpected arrival of a new job while stochastic events 
include machine breakdowns or variations in processing 
times. Such events, which are common in practice, can 
immediately render a schedule obsolete by changing the 
underlying JSSP. Thus, a schedule has to be updated within a 
short time period for smooth production. Hence, any newly 
updated schedule must have a high performance in terms of 
shop floor efficiency and be as consistent as possible to the 
original one since many related supply chain activities such as 
purchasing, materials handling, inventory, and distribution 
were planned based on the original schedule. The attribute 
that an updated schedule is consistent to the original one is 
referred to as schedule stability. The main challenge for 
scheduling dynamic or stochastic JSSPs is to generate both 
quality and consistent schedules under tight computing time 
constraints.  
In this regard, the solution approach has been twofold: before 
and after the actual occurrence of the disruption. Given this, 
there are two categories of scheduling approaches: proactive 
and reactive. Proactive scheduling, also known as robust 

scheduling, seeks to pro-actively build robust schedules to 
sustain interruptions through strategies like inserting idle 
times or introducing redundancy in either resource or 
schedule. The main disadvantage of proactive scheduling is 
that shop efficiency performance will be sacrificed if the 
expected interruptions do not occur at a later stage.  
Reactive scheduling, or rescheduling, focuses on generating 
new schedules or modifying an existing schedule after the 
actual occurrence of an interruption [1]. Its advantages are: 1) 
there is no wasted computing effort a priori nor the sacrifice 
of shop efficiency from inserted idle times; 2) an optimized 
new schedule with a global view can be targeted if a complete 
schedule is generated. Despite this, besides the prohibitive 
computing costs for most scheduling problems, is that the 
newly generated schedule may cause “nervousness” on a shop 
floor due to the inconsistency between the updated and the 
original schedules. Scheduling for schedule stability is also 
referred to as minimally disruptive, minimal perturbation, and 
minimum deviation scheduling.  
The current study shows that a complete regeneration of the 
schedule in the paradigm of reactive scheduling, against the 
common belief in the literature, can also provide timely stable 
and quality schedules for dynamic and stochastic JSSPs using 
the unique self-adaptation mechanism of the ACO algorithm.  
Two attributes of the ACO, which is inspired from the 
behavior of foraging ants, make it amenable for solving 
moderate dynamic or stochastic JSSPs. First, ACO can 
generate optimized solutions and the pioneering work in this 
direction has been reported in [2][3][4][5][6] for many types 
of scheduling problems. Next, ACO has a unique self-
adaptation mechanism [7][8][9] to  update an obsolete 
schedule without losing quality and stability.  
Beyond those achievements, this paper aims to answer some 
additional research questions other than what the above 
mentioned: 1) what is the stability performance of an updated 
schedule generated through this mechanism in addition to its 
shop floor efficiency? 2) How does the response time affect 
those two performances? We investigate both questions for 
moderate dynamic and stochastic JSSPs.  
The paper is structured as follows. Section II presents the 
ACO algorithm and its self-adaptation mechanism. The 
experiments and solution analyses on dynamic and stochastic 
JSSPs are found in Sections III and IV respectively. Section 
V concludes.  
 
II. ACO and its self-adaptation behavior 
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The notations used in this paper are listed as follows.  
h  is the index of iteration number; )(hpij

 is the probability 

that an ant travels from node i to node j at hth iteration; )(hij  
is the quantity of pheromone on the edge connecting nodes i 
and j at hth iteration; 

ijd  is the heuristic distance between 

nodes i and j; ρis the evaporation coefficient, a real number 

between 0 and 1;  hij  is the amount of increased 

pheromone on the edge connecting nodes i and j at the hth 
iteration; Q is the constant representing the total quality of 
pheromone on a route;  farsobestf evaluation __  is the best 

value obtained so far for a given objective.  
 
a. ACO 
The ACO algorithm in basic form is given in Figure 1.  

 
Figure 1.The ACO algorithm 

Ant i chooses its next destination according to the State 
Transition Rule in eqn (1) [3]. 
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Each ant leaves some amount of pheromone on the edges it 
has passed. The values of the pheromone on all edges are 
recorded in a pheromone matrix. Its updating involves 
evaporation and enhancement, which are represented in eqn 
(2) and (3) [3].  
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u: random number between [0..1] 
v: percentage of variation rate [0..1] 

Next, a variation rate parameter v can be introduced to 
further diversify the search space through eqn (4), where u is 
a random real number in [0, 1] and v is a preset value. If u is 
greater than v, the probability of an ant choosing a next 
destination follows the State Transition Rule, which has the 
impact from both the pheromone and heuristic distance

ijd ; 

otherwise, only the information heuristic distance is used to 
decide the next destination.   
 
b. Apply ACO to a classic JSSP 
A classic n-job and m-machine JSSP for optimizing 
makespan can be represented in the form of n/m/G/Cmax, 
where G is the job shop and Cmax is the makespan. The 
problem graph of a 2/3/G/Cmax JSSP can be illustrated in 
Figure 2. Nodes 1 to 6 represent operations O11, O12, to O13, 
and O21, O22, to O23. They are connected by horizontal 
directional edges indicating the precedence constraints given 
in the technical matrix T. The bi-directional edges indicate 
no ordering constraints among those operations. Dummy 
nodes 0 and 7 representing the source and the sink of the 
graph are the start and the end points of the route.   

Step 1: initiate iteration counter h , the best global route, and the 
pheromone matrix 

Step 2: initiate ants 
Step 2.1: each ant finds a route according to formula (1) 
Step 2.2: find the best route in the current iteration; update the 
best global solution 
Step 2.3: update the pheromone matrix according to (2) and (3) 

Step 3: increase h  by one. Go to step 2 unless termination criteria are 
met.  
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Figure 2. Graph representing a 2 x 3 JSSP 

Each edge is associated with a pair of values  ijij d, , 

representing the amount of pheromone on it and the heuristic 
distance between the two nodes it connects. The value for 

ij  

is found in the pheromone matrix, which records the 
pheromone values of all the edges connecting every two 
nodes and is updated using eqn (2) and (3) by the ants that 
find the best solutions. ijd  represents the processing time of 

node i.  
 
c. ACO self-adaptation mechanism 
The ACO self-adaptation mechanism is inspired from the 
following natural phenomenon. When the current route from 
the nest of a group of ants to a food source is blocked, the 
ants do not return to their nest to begin a new search for a 
totally different short route. Instead, they quickly form a new 
short route that is similar to the previous one using exactly the 
same strategy based on the remaining pheromone information 
in the environment. Thus, the remaining pheromone 
information on the ground can direct ants to find a new good 
route, which is similar to the original one, in a changed 
environment.  
This mechanism is realized by keeping the old pheromone 
information on all remained edges while setting a preset 
amount of pheromone value on all newly generated edges. 
Then, ACO is run until a new good solution is found in the 
allowed time span. The new schedule is regarded as a self-
adapted result from the obsolete one.  
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Figure 3 illustrates the changes in the pheromone matrix 
after an unexpected job arrives. Figure 3a represents the 
pheromone matrix of the original schedule found for the 
6/6/G/Cmax problem after 1000 iterations. Figure 3b is the 
updated pheromone matrix removing the nodes for 
completed operations and adding in new nodes representing 
new operations. The edges incurred by the new operations 
are initiated with a pheromone value of 0.8 in Figure 3b. 
Figure 3c shows the new pheromone matrix of the new 
schedule found by ACO after 250 iterations.     
 

 
(a)  Pheromone matrix for original schedule 

 
(b)  Initiate the pheromone matrix keeping previous pheromone 

information 

 
(c) Pheromone matrix after 250 iterations 

Figure 3. Rescheduling with the ACO self-adaptation mechanism 
It is clear that the solution information of the original 
schedule recorded in the lower left part of the pheromone 
matrix (Figure 3b) can most likely be kept in its updated 
schedule (Figure 3c). However, if all the old pheromone 
information is erased by initiating a new problem graph with 
exactly the same pheromone value on each edge, there will be 
no connection between the two problem graphs and the 
solution adaptation will not happen.  
 
III. Experiment I: aco for dynamic jssps 

 
The main goal of experiment I is to study the ability of the 
ACO self-adaptation mechanism in promptly generating high 
quality and stable intermediate schedules for dynamic JSSPs 
given different response times.  
 
a. Experimental design  
A schedule is issued to a job shop floor sought using ACO as 
the initial executing schedule. The MT-6/6/G/Cmax problem 
is used here for its known optimum 55 [10] and its simplicity. 
An unexpected job (the first job in the MT-6/6/G/Cmax 

problem) arrives after the schedule is executed for one time 

unit. The reason for setting the arrival time at an early stage 
is to make the rescheduling problem nontrivial.  
A new complete schedule is then found for the changed set 
of operations through two ways: with and without ant self-
adaptation mechanism. For each approach, five levels of 
response times are allowed. The five levels of response times 
are represented as 10, 50, 100, 150, and 200 iterations. Thus, 
there are totally ten problem instances and each has ten 
replications. Two performance measures in this study are 
makespan and schedule stability. Makespan is the timespan 
of the schedule from the start time of the first job to the 
finish time of the last job. Schedule stability is described in 
terms of the deviation of the start times of all existing 
operations.  
 
b. ACO Parameters  
The ACO algorithm has nine parameters. α and β in eqn (1) 
decide the possibility of the next node that an ant is going to 
choose in the problem graph; ρ in eqn (2) and Q in eqn (3) 
are used to update the pheromone matrix; v and u in eqn (4) 
are explained in section IIIa; Other parameters not directly 
shown in the equations are l, τ0, and n. l is the number of ants 
per iteration; τ0 is the initial pheromone value on the edges; n 
is the minimal iteration number for the algorithm to find a 
solution. Here, n is 600 for the original MT-6/6/G/Cmax 
problem. The impact of many of the parameters based on the 
MT-6/6/G/Cmax problem is analyzed in [6] and the following 
values can generate good solutions: α = 10, β = 10, ρ = 0.01. 
Further, this paper suggests that the values of τ0 and Q do not 
have significant impact on the final solution and the speed to 
convergence. τ0 = 1.5 and Q = 100 are used in this study. 
Finally, v = 0.15 and l = 36. For the rescheduling problem, 
τ0’ = 0.8 is the initial pheromone value for all the newly 
added edges.  
 
c. Results 
The average performance values of the ten replications 
regenerating complete schedules with and without the ACO 
self-adaptation mechanism are given in Tables 1 and 2, 
respectively.  

Table 1: Results with self-adaptation for dynamic JSSPs 
Responding 
iterations 

10 50 100 150 200 

Makespan 
(original) 

61.57 60.86 61.47 61.68 60.47

Makespan 
(new) 

71.58 66.97 65.67 65.26 64.06

Makespan 
deviations 

10.01 6.11 4.6 3.59 3.59 

STD 289.59 148.13 113.29 102.98 103.12

Table 2: Results without self-adaptation for dynamic JSSPs 
Responding 
iterations 

10 50 100 150 200 

Makespan 
(original) 

61.17 60.57 61.77 62.98 62.77

Makespan 
(new) 

91.0 85.91 81.49 77.99 76.19

Makespan 29.83 25.34 19.71 15.01 13.42
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deviations 

STD 495.53 507.27 456.81 440.14 437.91

The second row records the mean makespan values of the 
schedules for the original MT-6/6/G/Cmax problem and the 
third row records the mean makespan values of the schedules 
for the new JSSPs after new jobs arrive. The difference in 
the makespan values between the original and new schedules 
is the makespan deviation, which is recorded in the fourth 
row. Finally, the last row records the mean starting time 
deviations (STD), which are calculated through eqn (5):  

Starting time deviation = )( '

0 0
ij

n

i

m

j
ij tt 

 

                              (5) 

where  and are the new and the original start times of 

operation O
ijt

'
ijt

ij.  
The other statistics of the results such as maximum, 
minimum, and mean values of the makespan and the starting 
time deviation, as well as their respective standard deviations, 
are recorded in Table 3. The values before the slash “/” are 
the results using the ACO self-adaptation mechanism while 
the values after the slash are results without using the 
mechanism. 

Table 3: Results with/without the self-adaptation for dynamic 
JSSPs 

Responding 
iterations 

10 50 100 150 200 

Makespan 
(max) 

76.08/ 
94.12 

71.09/ 
88 

68.06/ 
85.09 

70.06/ 
83.06 

69.04/
85.09 

Makespan 
(Min) 

66.07/ 
89.1 

62.06/ 
80 

64.05/ 
79.08 

61.04/ 
68.12 

61.04/
69.1 

Makespan 
(Mean) 

71.58/ 
91 

66.97/ 
85.8 

65.67/ 
81.49 

65.26/ 
77.99 

64.06/
76.19 

Makespan 
Std dev 

2.81/ 
1.8 

3.22/ 
2.62 

1.64/ 
2.27 

2.79/ 
4.30 

2.26/ 
4.70 

STD  
(max) 

503.28/ 
642.62 

393.46/
732.76 

248.06/ 
550.18 

213.85/ 
634.48 

194.96/
594.51

STD  
(min) 

96.91/ 
368.27 

2.00/ 
373.59 

19.08/ 
334.11 

13.16/ 
242.14 

6.99/ 
246.54

STD  
(mean) 

289.59/ 
495.53 

148.13/
507.27 

113.29/ 
456.81 

102.98/ 
440.14 

103.12/
437.91

STD  
Std dev 

150.28/ 
84.33 

124.25/
98.55 

60.99/ 
77.67 

60.02/ 
124.18 

60.29/
114.97

The second row in Table 3 records the maximum makespan 
values among the ten replications for each problem; the third 
and fourth rows record the minimum and the mean values. 
Then follow the makespan standard deviations. Similar 
statistics are recorded in the rest of the rows for the 
performance of the starting time deviation.  
 
d. Solution analysis 
Overall, the results show that the approach with the ACO 
self-adaptation mechanism produces new schedules with 
much better makespan and stability performance than those 
without using the ACO self-adaptation mechanism for all 
five levels of the response times. For the makespan deviation 
measure, the performance comparison between two 
approaches is illustrated in Figure 4, where labels 1, 2, 3, 4, 
and 5 refer to the five response times defined by 10, 50, 100, 
150, and 200 iterations.  

Figure 4 shows that the makespan values of the JSSP after 
the arrival of an unexpected job increase for both approaches. 
If the ACO adaptation mechanism is used, the average 
makespan values increase only 10, 6.11, 4.6, 3.59 and 3.59 
time units (Table 1) for the five levels of the response times, 
respectively. However, the corresponding values jump to 
29.83, 25.34, 19.71, 15.01, and 13.42 time units (Table 2), 
without the adaptation mechanism. Clearly, rescheduling 
using the ACO adaptation mechanism improves the 
makespan performance of the new schedules.  

 
Figure 4. Makespan deviations for dynamic JSSPs  

The adaptation mechanism is very efficient as high quality 
schedules can be obtained with the response time as short as 
10 or 50 iterations. Tables 1 and 2 show that an average 
makespan value of about 61 is obtained for the original MT-
6/6/G/Cmax problem by ACO using 600 iterations. Thus, with 
only 10 iterations, it is hard, if not impossible, for ACO 
without using the adaptation mechanism to find a near 
optimal solution from scratch. However, if the ACO 
adaptation mechanism is used, one of the best experiments 
obtains a new schedule with only an increased makespan of 
3.97 and the starting time deviation of 130.06 after 10 
iterations. Figure 4 also shows that the quality of the new 
schedules improves as response times increase for both 
approaches.  

 
Figure 5. Starting time deviations for dynamic JSSPs  

Similarly, for the measure of the starting time deviation, the 
performance comparison between two approaches is shown 
in Figure 5. The start times of some operations are changed 
due to an arriving job. If the ACO adaptation mechanism is 
used, the average starting time deviation are 289.59, 148.13, 
113.29, 95.99, and 103.12 for the five levels of response 
times, respectively. However, for the approach without using 
the mechanism, the corresponding values are 495.53, 507.27, 
456.81, 440.14, and 437.91. As a smaller value implies better 
stability, rescheduling using the ACO adaptation mechanism 
improves schedule stability.  
Finally, Table 3 shows that the approach using the ACO 
adaptation mechanism generates better schedules in all 
problem instances in terms of maximum, minimum, and 
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mean values for both performance measures of makespan 
and starting time deviation. As for the standard deviation, the 
approach with the self-adaptation mechanism outperforms 
the one without the self-adaptation when the reaction times 
increase to 100, 150, and 200 iterations. The analysis of the 
starting time deviations follows a similar pattern. 
 
IV. Experiment II: aco for stochastic jssps 

 
Experiment II seeks to show that the self-adaptation of ACO 
can generate solutions with both high performance and 
stability for stochastic JSSPs upon machine breakdowns.  
 
a. Experimental design 
The MT-6/6/G/Cmax problem is again used here with a minor 
modification. Workcenter 5 has two identical machines. An 
optimal or near optimal schedule is sought in advance using 
ACO with 600 iterations and released to guide production. 
During the execution of the schedule, one of the parallel 
machines in workcenter 5 unexpectedly breaks down and the 
current schedule becomes obsolete. A new complete schedule 
is then quickly sought with only one workable machine left in 
workcenter 5. To make the updating problem nontrivial, the 
machine breakdowns occur right at the starting time of the 
original schedule. Thus, the JSSP problem with parallel 
machines changes to the classic MT-6/6/G/Cmax problem, 
which has an optimal makespan value of 55. The rest setting 
and parameter values of experiments are similar to the 
previous section.  
 
b. Results 
The average performance values for the ten replications 
regenerating complete schedules with and without the ACO 
self-adaptation mechanism are given in Tables 4 and 5, 
respectively. 
Table 4: Results of ACO with self-adaptation for stochastic JSSPs 

Responding 
iterations 

10 50 100 150 200 

Makespan 
(original) 

57.46 57.46 57.36 58.86 58.46

Makespan 
(new) 

63.95 63.26 62.95 63.26 62.35

Makespan 
dev 

6.49 5.79 5.59 4.39 3.89 

Starting 
time dev 

84.44 80.56 86.53 122.73 109.53

Table 5: Results of ACO without self-adaptation for stochastic 
JSSPs 

Responding 
iterations 

10 50 100 150 200 

Makespan 
(original) 

57.36 57.06 58.36 57.57 57.80

Makespan 
(new) 

82.69 79.08 74.28 69.59 68.68

Makespan 
dev 

25.32 22.02 15.92 12.03 10.88

Starting 
time dev 

384.02 415.24 312.44 358.74 318.24

Further, like Table 3, Table 6 also records the statistics of 
maximum, minimum, and mean values, as well as the 
standard deviations of the two performance measures.  

 
Table 6: Results with/without the self-adaptation for stochastic 

JSSPs 
Responding 

iterations 
10 50 100 150 200 

Makespan
(max) 

68.04/
87.11 

69.09/ 
83.09 

67.05/ 
80.07 

68.08/
77.09 

67.05/
76.08 

Makespan
(Min) 

58.06/
80.09 

59.04/ 
71.06 

59.05/ 
69.08 

59.05/
63.06 

60.05/
64.08 

Makespan
(Mean) 

63.95/
82.69 

63.26/ 
79.08 

62.95/ 
74.28 

63.26/
69.59 

62.35/
68.68 

Makespan
Std dev 

2.73/ 
1.96 

3.33/ 
3.90 

1.64/ 
3.55 

2.41/ 
4.43 

2.11/ 
3.44 

STD  
(max) 

225.21/
486.22

114.93/ 
541.26 

169.05/ 
441.47 

237.48/
484.54

166.99/
488.18

STD  
(min) 

21.08/
292.02

37.94/ 
265.2 

41.03/ 
157.05 

10.93/
238.32

66.00/ 
174.24

STD  
(mean) 

84.44/
384.02

80.56/ 
415.24 

86.53/ 
312.44 

122.73/
358.74

109.53/
318.239

STD  
Std dev  

57.56/
57.09 

9.28/ 
93.95 

15.15/ 
94.4 

67.66/
86.51 

32.89/ 
109.88

 
c. Results analysis 
Tables 3 and 4 again show that the approach with ACO self-
adaptation produces new schedules with significantly better 
makespan and stability performances than those without 
using the ACO self-adaptation for all five levels of response 
times.  

 

Figure 6. Makespan deviations for JSSPs with machine breakdown 
Figure 6 shows the performance comparison between two 
approaches for the makespan deviation measure, where the 
labels 1, 2, 3, 4, and 5 refer to the five response times 
defined by 10, 50, 100, 150, and 200 scheduling iterations. 
Generally, the makespan values of the JSSP after a machine 
breakdown increase for both approaches. When the ACO 
adaptation mechanism is used, the average makespan values 
increase only 6.49, 5.79, 5.59, 4.39 and 3.89 time units for 
the five levels of response times respectively. However, the 
corresponding values are 25.32, 22.02, 15.92, 12.03, and 
10.88 time units without the adaptation mechanism.  
The ACO adaptation mechanism again shows its ability in 
generating relatively high quality schedule (63.95 and 63.26) 
within very short response times even at 10 and 50 iterations. 
As a comparison, ACO without using adaptation mechanism 
can only yield makespan values of 82.69 and 79.08 for the 
same computational times. Indeed, one of the best results in 
the experiments using 10 responding iterations shows that 
the updated schedule has an increased makespan value of 
only 2.01 with the starting times deviation at 21.08. For the 
starting time deviation measure, the experiments show that 
updating schedules with the ACO adaptation can 

The 4th International Conference on Operations and Supply Chain Management, Hongkong&Guangzhou, Jul.25 to Jul.31, 2010 

314



 Rong Zhou, Mark Goh, Gang Chen, Ming Luo, Robert De Souza  

significantly improve schedule stability. If the mechanism is 
used, the average starting time deviations are 84.44, 80.56, 
86.53, 122.73, and 109.53 (Table 4) respectively for the five 
levels of response times. When the adaptation mechanism is 
not applied, the corresponding values increase to 384.02, 
415.24, 312.44, 358.74, and 318.24 (Table 5), respectively.  
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Figure 7. Starting time deviations for JSSPs with machine 
breakdown 

Figure 7 presents the performance comparison between the 
two approaches for the starting time deviation measure. 
Similar to those in dynamic JSSP, the ACO with the 
adaptation mechanism can produce stable schedules within 
very short response times, e.g. 10 or 50 iterations. However, 
as the response times continue to increase, the stability 
reduces for both approaches.  
Table 6 shows that the ACO using the adaptation mechanism 
again generates better schedules in all problem instances in 
terms of maximum, minimum, and mean values for both 
performance measures of makespan and starting time 
deviation. As for the standard deviation, the approach with 
the self-adaptation mechanism outperforms the one without 
the self-adaptation in all problem instances except for the 
makespan measure where 10 iterations are used to find new 
schedules.  
Overall, the above experiments show that the ACO self-
adaptation mechanism can help to generate quality and stable 
schedules for stochastic JSSPs. This behavior can be 
explained as follows. When the ACO adaptation is applied, a 
small number of responding iterations implies a small 
number of possible variations from the original schedule. 
Thus, the updated schedule is likely to be close to the 
original schedule in terms of operation sequence and 
schedule stability. When the response time continues to 
increase, ACO explores larger solution spaces for better 
schedules to replace the original one. This can cause more 
operations to be reallocated and subsequently deteriorate the 
schedule stability. If the ACO adaptation is not used, the 
schedule stability is hardly guaranteed as the updated and the 
original schedules have no connections at all.  
 
V. Conclusion 

 
This study explores the ability of the ACO self-adaptation 
mechanism to provide quality and stable schedules for 
dynamic and stochastic JSSPs within limited response times. 
Our results suggest that the quality and the stability of the 
schedules generated with the proposed mechanism are 

significantly superior to those without using the mechanism 
for all five levels of response times, especially, when the 
response times are extremely tight which is often the case in 
practice. This is critical for practical applications, where the 
schedule quality and stability provided with promptness are 
important for operation, profit, and competition.  
Another merit of this approach is that no extra procedure or 
computational cost is required except for the normal 
overhead of the ACO algorithm. Further, the application of 
the ACO adaptation mechanism is simple and even the 
original optimal schedule is not necessarily generated by 
ACO, rather, it can be provided by another suitable approach. 
Finally, it is against the common belief in the reactive 
scheduling literature that regenerating complete schedules 
leads to schedule instability, which may be true for 
scheduling techniques that do not use an adaptation 
mechanism.  
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